70 WATTS

REL-70 SERIES AC-DC

FEATURES:

- RoHS Compliant
- Universal 85-264 VAC Input
- High Efficiency
- Advanced SMT Design
 Compact 2.5 x 4.5" x 1.2" Size
- 2 Year Warranty
- Fits 1U Applications
- EN 60950-1 ITE Certification
 EN 60601-1 Medical Certification
- Class B Emissions per EN 55011/22
- Harmonic Current per EN 61000-3-2
- Compact 2.5 x 4.5" x 1.2" Size EMC to EN 61000-6-2 & EN 60601-1-2
 - Optional Chassis and Cover
 - One to Four Outputs

OPEN FRAME

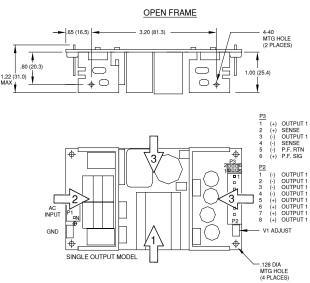
CHASSIS/COVER

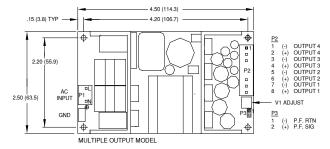
SAFETY SPECIFICATIONS

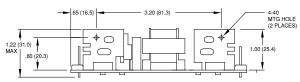
General		Protection Class: I Overvoltage Category: II Pollution Degree: 2
c FL us	Underwriters Laboratories File E137708/E140259	UL 60950-1 2 nd Edition, 2007 UL 60601-1 1st Edition, 2006 AAMI/ANSI ES 60601-1, 2005
IECEE Scheme		CB Reports/Certificates (including all National and Group Deviations) IEC 60950-1/A1:2009, Second Edition IEC 60601-1:1988 +A1:1991 +A2:1995 IEC 60601-1:2005, Third Edition
c RL us	UL Recognition Mark for Canada File E137708/E140259	CAN/CSA-C22.2 No. 60950-1-07, 2 nd Edition CAN/CSA-C22.2 No. 601-1-M90, 2005 CAN/CSA-C22.2 No. 60601-1:2008
SUD	TUV	EN 60950-1/A12:2011 EN 60601-1/A2:1995 EN 60601-1:2006
CE	Low Voltage Directive RoHS Directive (Recast)	(2006/95/EC of December 2006) (2011/65/EU of June 2011)

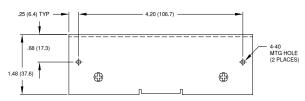
MODEL LISTING

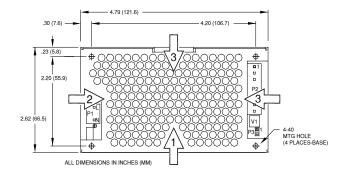
MODEL LISTING						
MODEL NO.	OUTPUT 1	OUTPUT 2	OUTPUT 3	OUTPUT 4		
REL-70-4001	+3.3V/6A	+5V/5A	+12V/2A(7)	-12V/2A(7)		
REL-70-4002	+5V/6A	+3.3V/5A	+12V/2A(7)	-12V/2A(7)		
REL-70-4003	+5V/6A	+3.3V/5A	+15V/2A(7)	-15V/2A(7)		
REL-70-4004	+5V/6A	-5V/5A	+12V/2A(7)	-12V/2A(7)		
REL-70-4005	+5V/6A	-5V/5A	+15V/2A(7)	-15V/2A(7)		
REL-70-4006	+5V/6A	+24V/2A	+12V/2A(7)	-12V/2A(7)		
REL-70-4007	+5V/6A	+24V/2A	+15V/2A(7)	-15V/2A(7)		
REL-70-4009	6.7V/5A	5V/4A	+15V/2A(7)	-15V/2A(7)		
REL-70-3001	+5V/6A	+12V/2A		-12V/2A(7)		
REL-70-3002	+5V/6A	+15V/2A		-15V/2A(7)		
REL-70-3003	+5.1V/6A	+7.5V/2A		-7.5V/2A(7)		
REL-70-3004	+3.3V/6A	+7V/5A	+12V/2A(7)			
REL-70-2001	+3.3V/6A	+5V/5A				
REL-70-2002	+5V/6A	+12V/4A				
REL-70-2003	+5V/6A	+24V/2A				
REL-70-2004	+12V/3A	-12V/3A				
REL-70-2005	+15V/3A	-15V/2A				
REL-70-2006	+5.5V/6A	-5.5V/5A				
REL-70-1001	2.5V/14A(1)					
REL-70-1002	3.3V/14A(1)					
REL-70-1003	5V/14A(1)					
REL-70-1004	12V/5.8A					
REL-70-1005	15V/4.7A					
REL-70-1006	24V/2.9A					
REL-70-1007	28V/2.5A					
REL-70-1008	48V/1.5A					

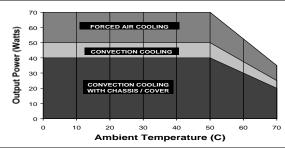

	Convecti	on Cooled	
70W	Convection Cooled Forced Air Cooled		
Output 1:	± 0.5%	(All outputs at 50% load)	
Output 2,3,4:	$\pm 5.0\%$		
Output 1:			
		(10-100% load change)	
Outputs 1 – 4:	0.5%		
Outputs 2 – 4:	5.0%		
	1.0%		
Output 1:	110% to 1	50%	
110-160% rated	Pout, cycle	on/off, auto recovery	
		/ Input	
	/ Input		
	<u>_</u>		
	C		
	0Wer 2201	varies by model	
0.95 (Full Power	. 2301/	, vancs by model	
	ower Ratino	Chart	
- 40° C to + 85°			
	0.02	%/°C	
TIONS			
Operationalinsu			
5656 VDC. Prim	arv to Seco	ndary, 1 Sec.	
2545 VDC, Prim	ary to Grou	nd, 1 Sec.	
707 VDC, Secon	idary to Gro	ound, 1 Sec.	
<1000A NC, <50	OUA SEC	allura 10 mC	
100.000 Hours n	nin., MIL-HI	DBK-217F, 25° C, GB	
EN 61000-4-2		ontact Discharge	
EN (1000 4.2		r Discharge	
		.5GHz, 10/m, 80% AM	
EN 61000-4-3	1/2 VV		
EN 61000-4-4	+/-2 kV +/- 1 kV (Common Mode	
	+/- 1 kV (Common Mode Differential Mode	
EN 61000-4-4	+/- 1 kV (+/- 2 kV [
EN 61000-4-4 EN 61000-4-5	+/- 1 kV (+/- 2 kV [.15 to 80 30% Red	Differential Mode MHz, 10V, 80% AM uction, 500ms	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red 60% Red	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms uction, 1s (Criteria B)	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6 EN 61000-4-11	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red 95% Red 95% Red	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms uction, 1s (Criteria B) uctions, 5000ms	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6 EN 61000-4-11 EN 61000-4-11	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red 95% Red 95% Red 95% Red	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms uction, 1s (Criteria B)	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6 EN 61000-4-11 EN 61000-4-11 EN 55011/22	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red 95% Red 95% Red 95% Red Class B	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms uction, 1s (Criteria B) uctions, 5000ms	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6 EN 61000-4-11 EN 61000-4-11 EN 55011/22 EN 55011/22	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red 95% Red 95% Red 95% Red	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms uction, 1s (Criteria B) uctions, 5000ms	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6 EN 61000-4-11 EN 61000-4-11 EN 55011/22 EN 55011/22 EN 61000-3-2	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red 95% Red 95% Red 95% Red Class B	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms uction, 1s (Criteria B) uctions, 5000ms	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6 EN 61000-4-11 EN 61000-4-11 EN 55011/22 EN 55011/22	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red 95% Red 95% Red 95% Red Class B	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms uction, 1s (Criteria B) uctions, 5000ms	
EN 61000-4-4 EN 61000-4-5 EN 61000-4-6 EN 61000-4-11 EN 61000-4-11 EN 55011/22 EN 55011/22 EN 61000-3-2	+/- 1 kV (+/- 2 kV I .15 to 80 30% Red 95% Red 95% Red 95% Red 95% Red Class B	Differential Mode MHz, 10V, 80% AM uction, 500ms uction, 10ms uction, 1s (Criteria B) uctions, 5000ms	
	Output 1: Output 1: Output 1: Output 1: Output 1: Output 2: (4001-5) (2001) Output 3: Output 4: Outputs 1 – 4: Output 1: 110-160% rated 16 mS min., Full 4 Seconds, 120V VS 85 – 264 Volts A 47 – 63 Hz 40A 78% Typ., Full P 0.95 (Full Power CIFICATIO 0° C to + 70° C Derating: See Pc - 40° C to + 85° Outputs 1 – 4: TIONS 2MOPP (Means 1MOPP (Means Operational Insu 5656 VDC, Prim. 2300uA NC, <10C	50W Convection 70W Forced A Output 1: ± 0.5% Output 1: 95 - 105% Output 1: 95 - 105% Output 1: 0.5% Output 1: 95 - 105% Output 1: 0.5% Output 2: 5.0% (4001-5) 8.0% (2001) 8.0% Output 3: 5.0% Output 4: 5.0% Outputs 1 - 4: 5.0% Output 1: 110% to 1 110-160% rated Pout, cycle 16 mS min., Full Power, 85% 4 Seconds, 120V Input VS 85 - 264 Volts AC 47 - 63 HZ 40A 78% Typ., Full Power, 230V) CCIFICATIONS 0° C to + 70° C 0.95 (Full Power, 230V) 0° C to + 70° C Derating: See Power Rating - 40° C to + 85° C 0.0254 0uppe (Means of Patient F 0.0254 0MOPP (Means of Patient F	


All specifications are maximum at 25° C, 110W unless otherwise stated, may vary by model and are subject to change without notice.


Specify optional chassis and cover when ordering.


REL-70 MECHANICAL SPECIFICATIONS




Recommended Air Flow Direction

1 – Optimum 2 – Good 3 – Fair

APPLICATIONS INFORMATION

- Rated 10A with convection cooling.
- 2. Total power must not exceed 50 watts with convection cooling on open frame models.
- Total power must not exceed 70 watts with 300LFM forced air cooling on open frame models.
- Total power must not exceed 40 watts with convection cooling and chassis/cover option.
 Total power must not exceed 70 watts with 300LFM forced air cooling and chassis/cover
- Total power must not exceed 70 waits with soul-rw forced all cooling and chassis/cover option.
- 6. Each output can deliver its rated current but total output power must not exceed maximum power as determined by the cooling method stated above.
- 7. Rated 1.5 A with convection cooling.
- Sufficient area must be provided around convection cooled power supplies to allow natural movement of air to develop.
- 300 linear feet per minute of airflow must be maintained one inch above any point of the heatsink in the direction shown when forced air cooling is required.
- This product is intended for use as a professionally installed component within information technology and medical equipment.
- A minimum load of 10% is required on output one to ensure proper regulation of remaining outputs.
- Remote sense terminals may be used to compensate for cable losses up to 250mV (single output models only). The use of a twisted pair is recommended as well as a decoupling capacitor (0.1 - 10μF) and a capacitor of 100μF/amp connected across the load side.
- Peak to peak output ripple and noise is measured directly at the output terminals of the power supply, without the use of the probe ground lead or retractable tip, 20 MHz bandwidth.
- 14. This product was type tested and safety certified using the dielectric strength test voltages listed in Table 6 of IEC 60601-1:2005. In consideration of Clause 8.8.3, care must be taken to insure that the voltage applied to a reinforced insulation does not overstress different types and levels of insulation. Primary and secondary to ground capacitors may need to be disconnected prior to performing a dielectric strength test on the power supply or the end product. It is highly recommended that the DC test voltages listed in DVB.1, Annex DVB of UL 60601-11 st Edition are not exceeded during a production-line dielectric strength test of the assembled end product. Please consult factory for further information.
- 15. This power supply has been safety approved and final tested using a DC dielectric
- strength test. Please consult factory before performing an AC dielectric strength test.Maximum screw penetration into bottom chassis mounting holes is .100 inches.
- 17. Maximum screw penetration into bottom chassis mounting holes is .100 inches.
- To meet emissions specifications, all four mounting hole pads must be electrically
- connected to a common metal chassis. Chassis/cover option recommended. 19. This product includes only one fuse in the input circuit. In consideration of Clause 8.11
- This product includes only one fuse in the input circuit. In consideration of Clause 8.11.5 of IEC 60601-1:2005, a second fuse may be required in the end product.

MAXIMUM Output Power vs. Ambient Temperature

Connector Specifications

	incolor ope	
P1	AC Input	.156 friction lock header mates with Tyco 640250-3 or
		equivalent crimp terminal housing with Tyco 3-640706-1 or
		equivalent crimp terminal.
P2	DC Output	.156 friction lock header mates with Tyco 770849-8 or
	(Single)	equivalent crimp terminal housing with Tyco 3-640707-1 or
		equivalent crimp terminal.
P2	DC Output	.156 friction lock header mates with Tyco 770849-8 or
	(Multiple)	equivalent crimp terminal housing with Tyco 3-640707-1 or
	-	equivalent crimp terminal.
G	Ground	.187 quick disconnect terminal.
P3	P.F./Sense	.100 breakaway header mates with Molex 22-55-2061 or
	(Single)	equivalent crimp terminal housing with Molex type 71851 or
		equivalent crimp terminal.
P3	Power Fail	.100 breakaway header mates with Molex 50-57-9002 or
	(Multiple)	equivalent crimp terminal housing with Molex type 71851 or
	-	equivalent crimp terminal.

