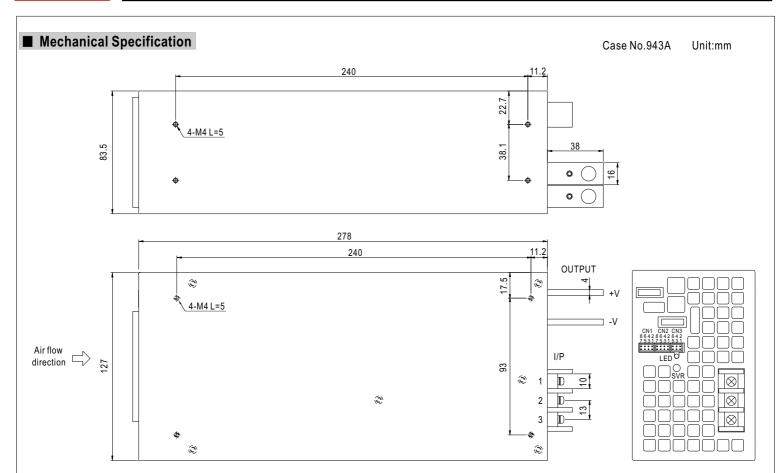


SPECIFICATION

Features:


- Universal AC input/Full range
- ZVS new technology
- AC input active surge current limiting
- High efficiency up to 91%
- Built-in active PFC function, PF>0.95
- Protections: Short circuit / Overload / Over voltage / Over temperature
- Forced air cooling by built-in DC ball bearing fan
- Output voltage can be trimmed between 70~100% of the rated output voltage
- High power density 8.3W/inch³
- Current sharing up to 6000W(3+1)
- · Alarm signal output
- Built-in 12V/0.1A auxiliary output for remote control
- · Built-in remote ON-OFF control
- Built-in remote sense function
- · 3 years warranty

R Jus A GENERAL CBCE

MODEL RSP-1500-5 RSP-1500-12 RSP-1500-15 RSP-1500-24 RSP-1500-27 RSP-1500-48 DC VOLTAGE 24V 12V 15V 27V 48V RATED CURRENT 240A 125A 100A 63A 56A 32A **CURRENT RANGE** 0~240A 0 ~ 125A 0 ~ 100A 0~63A 0~56A 0~32A **RATED POWER** 1200W 1500W 1500W 1512W 1512W 1536W RIPPLE & NOISE (max.) Note.2 150mVp-p 150mVp-p 150mVp-p 150mVp-p 150mVp-p 200mVp-p OUTPUT **VOLTAGE ADJ. RANGE** 4.5 ~ 5.5V 10 ~ 13.5V 13.5 ~ 16.5V 20 ~ 26.4V 24 ~ 30V 43 ~ 56V VOLTAGE TOLERANCE Note.3 +2 0% ±1.0% +1 0% ±1.0% ±1.0% ±1.0% LINE REGULATION +0.5% +0.5% +0.5% ±0.5% +0.5% +0.5% LOAD REGULATION +2 0% ±0.5% +0.5% ±0.5% ±0.5% ±0.5% SETUP, RISE TIME 1500ms, 100ms at full load **HOLD UP TIME (Typ.)** 10ms at full load 14ms at full load 16ms at full load **VOLTAGE RANGE** 90 ~ 264VAC 127 ~ 370VDC **FREQUENCY RANGE** 47~63Hz 0.95/230VAC 0.98/115VAC at full load POWER FACTOR (Typ.) INPUT 90% 90% 91% **EFFICIENCY (Typ.)** 87% 87% AC CURRENT (Typ.) 17A/115VAC 8A/230VAC INRUSH CURRENT (Typ.) 30A/115VAC 60A/230VAC LEAKAGE CURRENT <2.0mA / 240VAC 105 ~135% rated output power **OVERLOAD** Protection type: Constant current limiting unit will shut down o/p voltage after 5sec. Re-power on to recover 5.75 ~ 6.75V 13.8 ~ 16.8V 17 ~ 20.5V 27 6 ~ 32 4V $31 \sim 36.5 \text{V}$ 57 6 ~ 67 2V PROTECTION OVER VOLTAGE Protection type: Shut down o/p voltage, re-power on to recover 95° C $\pm 5^{\circ}$ C (TSW2) Detect on heatsink of power transistor OVER TEMPERATURE Protection type: Shut down o/p voltage, recovers automatically after temperature goes down **AUXILIARY POWER(AUX)** 12V@0.1A(Only for Remote ON/OFF control) REMOTE ON/OFF CONTROL Please see the Function Manual **FUNCTION | ALARM SIGNAL OUTPUT** Please see the Function Manual **OUTPUT VOLTAGE TRIM** Please see the Function Manual Please see the Function Manual **CURRENT SHARING** -20 ~ +70°C (Refer to output load derating curve) WORKING TEMP. 20~90% RH non-condensing **WORKING HUMIDITY** -40 ~ +85°C, 10 ~ 95% RH ENVIRONMENT STORAGE TEMP., HUMIDITY TEMP. COEFFICIENT ±0.05%/°C (0 ~ 50°C) 10 ~ 500Hz, 2G 10min./1cycle, 60min. each along X, Y, Z axes VIBRATION SAFETY STANDARDS UL60950-1, TUV EN60950-1 Approved WITHSTAND VOLTAGE I/P-O/P:3KVAC I/P-FG:1.5KVAC O/P-FG:0.5KVAC **SAFETY & ISOLATION RESISTANCE** I/P-O/P, I/P-FG, O/P-FG:100M Ohms/500VDC **EMC EMI CONDUCTION & RADIATION** Compliance to EN55022 (CISPR22) (Note 4) HARMONIC CURRENT Compliance to EN61000-3-2,-3 **EMS IMMUNITY** Compliance to EN61000-4-2,3,4,5,6,8,11; ENV50204, EN55024, Light industry level, criteria A MTBF MIL-HDBK-217F (25°C) 62.6K hrs min. **OTHERS DIMENSION** 278*127*83.5mm (L*W*H) 2.6Kg; 6pcs/16.6Kg/1.54CUFT **PACKING** 1. All parameters NOT specially mentioned are measured at 230VAC input, rated load and 25% of ambient temperature. NOTE

- 2. Ripple & noise are measured at 20MHz of bandwidth by using a 12" twisted pair-wire terminated with a 0.1uf & 47uf parallel capacitor.
- 3. Tolerance: includes set up tolerance, line regulation and load regulation.
- 4. The power supply is considered a component which will be installed into a final equipment. The final equipment must be re-confirmed that it still meets
- 5. Derating may be needed under low input voltages. Please check the derating curve for more details.

AC Input Terminal Pin No. Assignment

Pin No.	Assignment	
1	FG ±	
2	AC/N	
3	AC/L	

Control Pin No. Assignment(CN1,CN2):

Pin No.	Assignment	Pin No.	Assignment	Mating Housing	Terminal
1	RCG	4	TRIM	UD0 DE44	HRS DF11 or equivalent
2	RC2	6	LS(Current Share)	HRS DF11 or equivalent	
3,5,7	-S	8	+S	or oquivalent	

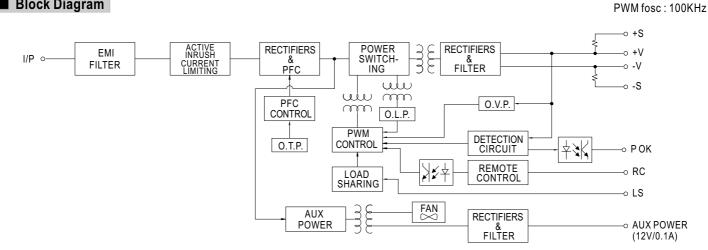
RCG: Remote ON/OFF Ground

RC2: Remote ON/OFF

-S :-Remote Sensing

TRIM: Adjustment of Output Voltage

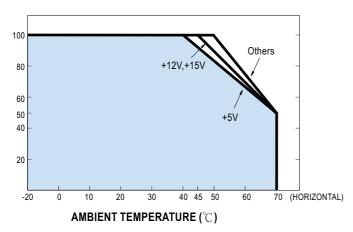
LS: Load Share +S: +Remote Sensing

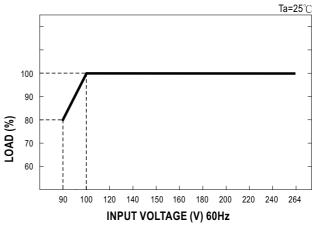

Control Pin No. Assignment(CN3):

Pin No.	Assignment	Pin No.	Assignment	Mating Housing	Terminal
1	P OK GND	4	AUXG	UDO DE44	HRS DF11 or equivalent
2	POK	5	RC1	HRS DF11 or equivalent	
3	RCG	6	AUX	or oquivalent	

P OK GND: Power OK Ground P OK: Power OK Signal RCG: Remote ON/OFF Ground

AUXG: Auxiliary Ground RC1: Remote ON/OFF AUX: Auxiliary Output




PFC fosc: 70KHz

■ Derating Curve

■ Static Characteristics

■ Function Manual

LOAD (%)

1.Remote ON/OFF

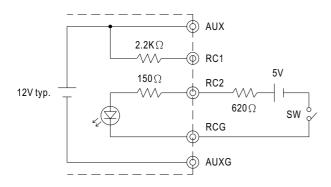

- (1)Remote ON/OFF control becomes available by applying voltage in CN1 & CN2 & CN3
- (2) Table 1.1 shows the specification of Remote ON/OFF function
- (3)Fig.1.2 shows the example to connect Remote ON/OFF control function

Table 1.1 Specification of Remote ON/OFF

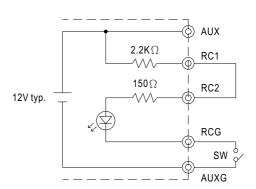
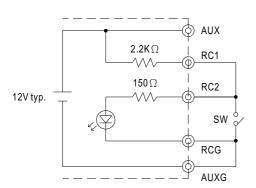

Connection Method		Fig. 1.2(A)	Fig. 1.2(B)	Fig. 1.2(C)
SW Logic	Output on	SW Open	SW Open	SW Close
3W Logic	Output off	SW Close	SW Close	SW Open

Fig.1.2 Examples of connecting remote ON/OFF


(A)Using external voltage source

(B)Using internal 12V auxiliary output

(C)Using internal 12V auxiliary output

2. Alarm Signal Output

- (1) Alarm signal is sent out through "P OK" & "P OK GND" pins
- (2)An external voltage source is required for this function. The maximum applied voltage is 50V and the maximum sink current is 10mA
- (3) Table 2.1 explain the alarm function built-in the power supply

Function	Description	Output of alarm(P OK)
P OK	The signal is "Low" when the power supply is above 65% of the rated output voltage-Power OK	Low (0.5V max at 10mA)
FUR	The signal turns to be "High" when the power supply is under 65% of the rated output voltage-Power Fail	High or open (External applied voltage 10mA max.)

Table 2.1 Explanation of alarm

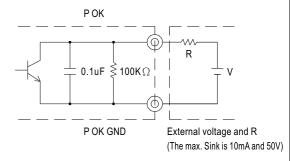


Fig. 2.2 Internal circuit of P OK (Open collector method)

3. Output Voltage TRIM

- (1)Adjustment of output voltage is possible between 70~100% (Typ.) of the rated output which is shown in Fig. 3.1
- (2) Connecting a resistor externally between TRIM and-S on CN1 or CN2 that is shown in Fig. 3.2.

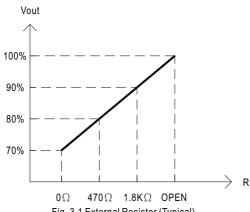


Fig. 3.1 External Resistor (Typical)

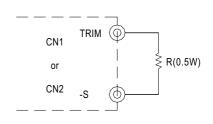
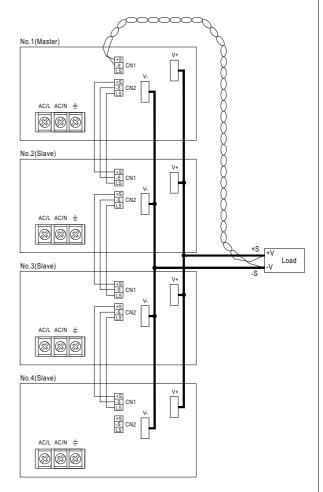



Fig. 3.2 Output voltage trimming

4. Current Sharing

- (1)Parallel operation is available by connecting the units shown as below (+S,-S and LS are connected mutually in parallel):
- (2) The voltage difference among each output should be minimized that less than $\pm 2\%$ is required
- (3) The total output current must not exceed the value determined by the following equation (Output current at parallel operation)=(The rated current per unit) x (Number of unit) x 0.9
- (4) In parallel operation 4 units is the maximum, please consult the manufacture for other applications
- (5) When remote sensing is used in parallel operation, the sensing wire must be connected only to the master unit

